Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 717, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267478

RESUMO

Inland waters are one of the largest natural sources of methane (CH4), a potent greenhouse gas, but emissions models and estimates were developed for solute-poor ecosystems and may not apply to salt-rich inland waters. Here we combine field surveys and eddy covariance measurements to show that salinity constrains microbial CH4 cycling through complex mechanisms, restricting aquatic emissions from one of the largest global hardwater regions (the Canadian Prairies). Existing models overestimated CH4 emissions from ponds and wetlands by up to several orders of magnitude, with discrepancies linked to salinity. While not significant for rivers and larger lakes, salinity interacted with organic matter availability to shape CH4 patterns in small lentic habitats. We estimate that excluding salinity leads to overestimation of emissions from small Canadian Prairie waterbodies by at least 81% ( ~ 1 Tg yr-1 CO2 equivalent), a quantity comparable to other major national emissions sources. Our findings are consistent with patterns in other hardwater landscapes, likely leading to an overestimation of global lentic CH4 emissions. Widespread salinization of inland waters may impact CH4 cycling and should be considered in future projections of aquatic emissions.

2.
Sci Total Environ ; 884: 163584, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116804

RESUMO

Wetlands are economically valuable ecosystems, in part because they purify wastewater by retaining and processing nutrients, organic matter (OM), and other pollutants. While natural wetlands are highly productive and sequester large pools of carbon (C), it is unclear whether the C cycle of restored treatment wetlands is functionally consistent with natural systems. This knowledge gap limits our appreciation for the role that wetland restoration can play as a natural solution to climate change. Here, we quantified metabolic and C cycling patterns of a restored, multi-basin wetland (Frank Lake, Alberta, Canada) receiving municipal and beef processing plant effluents rich in nutrients and OM. We conducted metabolic measurements in all three basins using dissolved oxygen sensors deployed under ice and in open water. Extreme production and respiration indicated that effluent was largely mineralized and replaced with wetland OM in transit. The heterotrophic status of all basins aligned with a published mass budget demonstrating the aquatic habitat of the wetland was an OM sink under current drought conditions that lengthen effluent processing time. Floating chamber measurements in open water zones confirmed that the wetland was a source of CO2 to the atmosphere. From input to outflow, sustained emissions led to declining pCO2 and a decline in the ratio of dissolved inorganic to organic C. Over 30 years post-restoration, the open water habitats in Frank Lake remain heterotrophic and a net source of CO2, suggesting that the trajectory of aquatic C cycling may be distinct from wetlands restored with non-effluent water sources.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Bovinos , Solo , Dióxido de Carbono , Alberta , Água , Metano
3.
Sci Total Environ ; 748: 141374, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823225

RESUMO

Methane-oxidizing bacteria (MOB) present in the water column mitigate methane (CH4) emissions from hydropower complexes to the atmosphere. By creating a discontinuity in rivers, dams cause large environmental variations, including in CH4 and oxygen concentrations, between upstream, reservoir, and downstream segments. Although highest freshwater methanotrophic activity is often detected at low oxygen concentrations, CH4 oxidation in well-oxygenated downstream rivers below dams has also been reported. Here we combined DNA and RNA high-throughput sequencing with microscopic enumeration (by CARD-FISH) and biogeochemical data to investigate the abundance, composition, and potential activity of MOB taxa from upstream to downstream waters in the tropical hydropower complex Batang Ai (Malaysia). High relative abundance of MOB (up to 61% in 16S rRNA sequences and 19% in cell counts) and enrichment of stable isotopic signatures of CH4 (up to 0‰) were detected in the hypoxic hypolimnion of the reservoir and in the outflowing downstream river. MOB community shifts along the river-reservoir system reflected environmental sorting of taxa and an interrupted hydrologic connectivity in which downstream MOB communities resembled reservoir's hypolimnetic communities but differed from upstream and surface reservoir communities. In downstream waters, CH4 oxidation was accompanied by fast cell growth of particular MOB taxa. Our results suggest that rapid shifts in active MOB communities allow the mitigation of CH4 emissions from different zones of hydropower complexes, including in quickly re-oxygenated rivers downstream of dams.


Assuntos
Metano , Methylococcaceae , Malásia , Metano/análise , Methylococcaceae/genética , Oxirredução , RNA Ribossômico 16S/genética , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...